Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2312256

ABSTRACT

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Subject(s)
Apoptosis Regulatory Proteins , Chiroptera , Inflammasomes , Ribonucleoproteins , Virus Diseases , Animals , Humans , Mice , Apoptosis Regulatory Proteins/metabolism , Chiroptera/immunology , COVID-19 , Inflammasomes/immunology , Ribonucleoproteins/metabolism , SARS-CoV-2 , Virus Diseases/immunology , Virus Physiological Phenomena
2.
Wiley Interdiscip Rev RNA ; 14(4): e1770, 2023.
Article in English | MEDLINE | ID: covidwho-2148489

ABSTRACT

In response to viral infection, mammalian cells activate several innate immune pathways to antagonize viral gene expression. Upon recognition of viral double-stranded RNA, protein kinase R (PKR) phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α) on serine 51. This inhibits canonical translation initiation, which broadly antagonizes viral protein synthesis. It also promotes the assembly of cytoplasmic ribonucleoprotein complexes termed stress granules (SGs). SGs are widely thought to promote cell survival and antiviral signaling. However, co-activation of the OAS/RNase L antiviral pathway inhibits the assembly of SGs and promotes the assembly of an alternative ribonucleoprotein complex termed an RNase L-dependent body (RLB). The formation of RLBs has been observed in response to double-stranded RNA, dengue virus infection, or SARS-CoV-2 infection. Herein, we review the distinct biogenesis pathways and properties of SGs and RLBs, and we provide perspective on their potential functions during the antiviral response. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Turnover and Surveillance > Regulation of RNA Stability RNA Export and Localization > RNA Localization.


Subject(s)
COVID-19 , Ribonucleoproteins , Animals , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Double-Stranded , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents , Mammals/genetics , Mammals/metabolism
3.
J Biol Chem ; 298(11): 102560, 2022 11.
Article in English | MEDLINE | ID: covidwho-2105268

ABSTRACT

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the ∼30-kb RNA genome in the ∼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phosphorylation , RNA, Viral/metabolism , COVID-19/genetics , Nucleocapsid Proteins/metabolism , Ribonucleoproteins/metabolism , Genomics
4.
Viruses ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: covidwho-2071840

ABSTRACT

Host-virus protein interactions are critical for intracellular viral propagation. Understanding the interactions between cellular and viral proteins may help us develop new antiviral strategies. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe damage to the global swine industry. Here, we employed co-immunoprecipitation and liquid chromatography-mass spectrometry to characterize 426 unique PEDV nucleocapsid (N) protein-binding proteins in infected Vero cells. A protein-protein interaction network (PPI) was created, and gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses revealed that the PEDV N-bound proteins belong to different cellular pathways, such as nucleic acid binding, ribonucleoprotein complex binding, RNA methyltransferase, and polymerase activities. Interactions of the PEDV N protein with 11 putative proteins: tripartite motif containing 21, DEAD-box RNA helicase 24, G3BP stress granule assembly factor 1, heat shock protein family A member 8, heat shock protein 90 alpha family class B member 1, YTH domain containing 1, nucleolin, Y-box binding protein 1, vimentin, heterogeneous nuclear ribonucleoprotein A2/B1, and karyopherin subunit alpha 1, were further confirmed by in vitro co-immunoprecipitation assay. In summary, studying an interaction network can facilitate the identification of antiviral therapeutic strategies and novel targets for PEDV infection.


Subject(s)
Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Vimentin/metabolism , Vero Cells , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Viral Proteins/metabolism , Coronavirus Infections/metabolism , Antiviral Agents/metabolism , RNA/metabolism , Heat-Shock Proteins/metabolism , Methyltransferases/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , DEAD-box RNA Helicases/metabolism , Ribonucleoproteins/metabolism , Karyopherins/metabolism , Nucleic Acids/metabolism
5.
EBioMedicine ; 75: 103806, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611694

ABSTRACT

BACKGROUND: To identify host genetic variants (SNPs) associated with COVID-19 disease severity, a number of genome-wide association studies (GWAS) have been conducted. Since most of the identified variants are located at non-coding regions, such variants are presumed to affect the expression of neighbouring genes, thereby influencing COVID-19 disease severity. However, it remains largely unknown which genes are influenced by such COVID-19 GWAS loci. METHODS: CRISPRi (interference)-mediated gene expression analysis was performed to identify genes functionally regulated by COVID-19 GWAS loci by targeting regions near the loci (SNPs) in lung epithelial cell lines. The expression of CRISPRi-identified genes was investigated using COVID-19-contracted human and monkey lung single-nucleus/cell (sn/sc) RNA-seq datasets. FINDINGS: CRISPRi analysis indicated that a region near rs11385942 at chromosome 3p21.31 (locus of highest significance with COVID-19 disease severity at intron 5 of LZTFL1) significantly affected the expression of LZTFL1 (P<0.05), an airway cilia regulator. A region near rs74956615 at chromosome 19p13.2 (locus located at the 3' untranslated exonic region of RAVER1), which is associated with critical illness in COVID-19, affected the expression of RAVER1 (P<0.05), a coactivator of MDA5 (IFIH1), which induces antiviral response genes, including ICAM1. The sn/scRNA-seq datasets indicated that the MDA5/RAVER1-ICAM1 pathway was activated in lung epithelial cells of COVID-19-resistant monkeys but not those of COVID-19-succumbed humans. INTERPRETATION: Patients with risk alleles of rs11385942 and rs74956615 may be susceptible to critical illness in COVID-19 in part through weakened airway viral clearance via LZTFL1-mediated ciliogenesis and diminished antiviral immune response via the MDA5/RAVER1 pathway, respectively. FUNDING: NIH.


Subject(s)
COVID-19/genetics , CRISPR-Cas Systems , Genetic Loci , Polymorphism, Single Nucleotide , Ribonucleoproteins/genetics , SARS-CoV-2/genetics , Transcription Factors/genetics , Animals , COVID-19/metabolism , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 19/metabolism , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 3/metabolism , Databases, Nucleic Acid , Genome-Wide Association Study , Haplorhini , Humans , RNA-Seq , Ribonucleoproteins/metabolism , SARS-CoV-2/metabolism , Transcription Factors/metabolism
6.
Trends Biochem Sci ; 47(1): 23-38, 2022 01.
Article in English | MEDLINE | ID: covidwho-1401892

ABSTRACT

RNA viruses interact with a wide range of cellular RNA-binding proteins (RBPs) during their life cycle. The prevalence of these host-virus interactions has been highlighted by new methods that elucidate the composition of viral ribonucleoproteins (vRNPs). Applied to 11 viruses so far, these approaches have revealed hundreds of cellular RBPs that interact with viral (v)RNA in infected cells. However, consistency across methods is limited, raising questions about methodological considerations when designing and interpreting these studies. Here, we discuss these caveats and, through comparing available vRNA interactomes, describe RBPs that are consistently identified as vRNP components and outline their potential roles in infection. In summary, these novel approaches have uncovered a new universe of host-virus interactions holding great therapeutic potential.


Subject(s)
Proteome , RNA, Viral , Cell Communication , Host Microbial Interactions , Host-Pathogen Interactions , Proteome/metabolism , RNA, Viral/genetics , Ribonucleoproteins/metabolism
7.
Nat Microbiol ; 6(3): 339-353, 2021 03.
Article in English | MEDLINE | ID: covidwho-1387365

ABSTRACT

Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturbation that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , COVID-19/virology , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Autoantigens/metabolism , Cell Line , Host-Pathogen Interactions , Humans , Protein Interaction Maps , Proteome , RNA, Viral/genetics , Ribonucleoproteins/metabolism , SARS-CoV-2/genetics , Virus Replication/physiology
8.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1322683

ABSTRACT

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Subject(s)
Interstitial Cells of Cajal/metabolism , Methylation , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , RNA Splicing , RNA, Small Nuclear/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Cholangiocarcinoma/drug therapy , Hematologic Neoplasms/drug therapy , Humans , Phosphorylation , RNA, Small Nuclear/chemistry , Ribonucleoproteins/metabolism , Spliceosomes/genetics , COVID-19 Drug Treatment
9.
RNA ; 27(9): 1025-1045, 2021 09.
Article in English | MEDLINE | ID: covidwho-1269913

ABSTRACT

Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a nonstructural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation levels. We discover that a functionally coherent subset of human genes is preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of Nsp1. Finally, we found that LARP1, a key effector protein in the mTOR pathway, may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine-tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.


Subject(s)
Host-Pathogen Interactions/genetics , Protein Biosynthesis , Proteins/chemistry , Proteins/genetics , Viral Nonstructural Proteins/genetics , 5' Untranslated Regions , Autoantigens/genetics , Autoantigens/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Protein Folding , Pyrimidines , RNA, Messenger/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Ribosomes/genetics , Ribosomes/virology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Viral Nonstructural Proteins/metabolism
10.
RNA Biol ; 18(2): 259-274, 2021 02.
Article in English | MEDLINE | ID: covidwho-1057781

ABSTRACT

La-related proteins (LARPs) share a La motif (LaM) followed by an RNA recognition motif (RRM). Together these are termed the La-module that, in the prototypical nuclear La protein and LARP7, mediates binding to the UUU-3'OH termination motif of nascent RNA polymerase III transcripts. We briefly review La and LARP7 activities for RNA 3' end binding and protection from exonucleases before moving to the more recently uncovered poly(A)-related activities of LARP1 and LARP4. Two features shared by LARP1 and LARP4 are direct binding to poly(A) and to the cytoplasmic poly(A)-binding protein (PABP, also known as PABPC1). LARP1, LARP4 and other proteins involved in mRNA translation, deadenylation, and decay, contain PAM2 motifs with variable affinities for the MLLE domain of PABP. We discuss a model in which these PABP-interacting activities contribute to poly(A) pruning of active mRNPs. Evidence that the SARS-CoV-2 RNA virus targets PABP, LARP1, LARP 4 and LARP 4B to control mRNP activity is also briefly reviewed. Recent data suggests that LARP4 opposes deadenylation by stabilizing PABP on mRNA poly(A) tails. Other data suggest that LARP1 can protect mRNA from deadenylation. This is dependent on a PAM2 motif with unique characteristics present in its La-module. Thus, while nuclear La and LARP7 stabilize small RNAs with 3' oligo(U) from decay, LARP1 and LARP4 bind and protect mRNA 3' poly(A) tails from deadenylases through close contact with PABP.Abbreviations: 5'TOP: 5' terminal oligopyrimidine, LaM: La motif, LARP: La-related protein, LARP1: La-related protein 1, MLLE: mademoiselle, NTR: N-terminal region, PABP: cytoplasmic poly(A)-binding protein (PABPC1), Pol III: RNA polymerase III, PAM2: PABP-interacting motif 2, PB: processing body, RRM: RNA recognition motif, SG: stress granule.


Subject(s)
Autoantigens/metabolism , Poly A , Poly(A)-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Amino Acid Motifs , Humans , Phylogeny , Protein Binding , Protein Biosynthesis , Protein Domains , RNA Stability , RNA, Messenger/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics
11.
Commun Biol ; 3(1): 715, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-940863

ABSTRACT

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has elicited a global health crisis of catastrophic proportions. With only a few vaccines approved for early or limited use, there is a critical need for effective antiviral strategies. In this study, we report a unique antiviral platform, through computational design of ACE2-derived peptides which both target the viral spike protein receptor binding domain (RBD) and recruit E3 ubiquitin ligases for subsequent intracellular degradation of SARS-CoV-2 in the proteasome. Our engineered peptide fusions demonstrate robust RBD degradation capabilities in human cells and are capable of inhibiting infection-competent viral production, thus prompting their further experimental characterization and therapeutic development.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/therapy , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , HEK293 Cells , Humans , Pandemics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Domains , Protein Engineering/methods , Proteolysis , Receptors, Virus , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virus Attachment , COVID-19 Drug Treatment
12.
Sci Rep ; 10(1): 14733, 2020 09 07.
Article in English | MEDLINE | ID: covidwho-748189

ABSTRACT

Nitazoxanide (NTZ) is effective against helminths and numerous microorganisms, including bacteria and viruses. In vivo, NTZ is metabolized into Tizoxanide (TIZ), which is the active circulating metabolite. With the emergence of SARS-Cov-2 as a Pandemic agent, NTZ became one of the molecules already approved for human use to engage clinical trials, due to results in vitro showing that NTZ was highly effective against the SARS-Cov-2, agent of COVID-19. There are currently several ongoing clinical trials mainly in the USA and Brazil involving NTZ due not only to the in vitro results, but also for its long-known safety. Here, we study the response of Vero cells to TIZ treatment and unveil possible mechanisms for its antimicrobial effect, using a label-free proteomic approach (LC/MS/MS) analysis to compare the proteomic profile between untreated- and TIZ-treated cells. Fifteen differentially expressed proteins were observed related to various biological processes, including translation, intracellular trafficking, RNA processing and modification, and signal transduction. The broad antimicrobial range of TIZ points towards its overall effect in lowering cell metabolism and RNA processing and modification. The decreased levels of FASN, HNRNPH and HNRNPK with the treatment appear to be important for antiviral activity.


Subject(s)
Anti-Infective Agents/pharmacology , Proteome/drug effects , Thiazoles/pharmacology , Animals , Chlorocebus aethiops , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Proteome/genetics , Proteome/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL